Field of view
overview
This utility project implements a dynamic Field of View (FOV) system in Unity 3D, designed to detect and visualize what an entity can “see” within a 3D environment. The system calculates angular vision cones, applies customizable radius and angle parameters, and uses raycasting to detect obstacles and line-of-sight for interactive or AI-driven elements. Perfect for stealth mechanics, visibility checks, or surveillance tools, this modular utility is easy to integrate into larger Unity projects and can be extended for real-time gameplay logic or editor-based simulation.
Year
2024
Genre
Utility
Platform
PC
Look around
C#
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
/// <summary>
/// Handles the player's Field of View (FOV), detecting visible targets and rendering the FOV mesh.
/// </summary>
public class FieldOfView : MonoBehaviour
{
[Header("FOV settings")]
[SerializeField] private float viewRadius; // Radius of the field of view
[Range(0,360)]
[SerializeField] private float viewAngle; // Angle of the field of view
[Header("Player Settings")]
[SerializeField] private Transform playerVisualTransform; // Reference to the player's visual transform
[Header("LayerMasks")]
[SerializeField] private LayerMask targetMask; // Layers considered as valid targets
[SerializeField] private LayerMask obstacleMask; // Layers considered as obstacles
[Header("Mesh Settings")]
[SerializeField] private float meshResolution; // Resolution of the FOV mesh
[SerializeField] private MeshFilter viewMeshFilter; // Mesh filter to display FOV mesh
[SerializeField] private int edgeResolveIterations; // Edge detection iterations
[SerializeField] private float edgeDistanceThreshold; // Distance threshold for edge detection
private Mesh viewMesh;
[SerializeField] private List<Transform> visibleTargets = new List<Transform>();
private void Start()
{
//viewMesh = new Mesh();
//viewMesh.name = "ViewMesh";
//viewMeshFilter.mesh = viewMesh;
//StartCoroutine("FindTargetsWithDelay", 0.2f);
viewMesh = new Mesh { name = "ViewMesh" };
viewMeshFilter.mesh = viewMesh;
StartCoroutine(FindTargetsWithDelay(0.2f));
}
private void LateUpdate()
{
DrawFOV();
}
/// <summary>
/// Periodically finds visible targets.
/// </summary>
private IEnumerator FindTargetsWithDelay(float delay)
{
while (true)
{
yield return new WaitForSeconds(delay);
FindVisableTargets();
}
}
/// <summary>
/// Detects targets within the FOV and checks for obstacles.
/// </summary>
private void FindVisableTargets()
{
foreach (Transform oldT in visibleTargets)
{
var oldTarget = oldT.GetComponentInParent<Target>();
if (oldTarget != null)
oldTarget.NotTargeted();
}
visibleTargets.Clear();
Collider[] targetInViewRadius = Physics.OverlapSphere(playerVisualTransform.position, viewRadius, targetMask);
for (int i = 0; i < targetInViewRadius.Length; i++)
{
Transform target = targetInViewRadius[i].transform;
Vector3 dirToTarget = (target.position - transform.position).normalized;
float angleToTarget = Vector3.Angle(playerVisualTransform.forward, dirToTarget);
if (angleToTarget < viewAngle / 2)
{
float distToTarget = Vector3.Distance(playerVisualTransform.position, target.position); // Check if there is an obstacle in the FOV
if (!Physics.Raycast(playerVisualTransform.position, dirToTarget, distToTarget, obstacleMask))
{
// there are no obstacles in the way, so we can see the target.
visibleTargets.Add(target);
var t = target.GetComponentInParent<Target>();
if (t != null)
t.Targeted();
}
}
}
}
public Vector3 DirFromAngle(float angleInDegrees, bool angleIsGlobal)
{
if (!angleIsGlobal)
{
angleInDegrees += playerVisualTransform.eulerAngles.y;
}
return new Vector3(Mathf.Sin(angleInDegrees * Mathf.Deg2Rad), 0, Mathf.Cos(angleInDegrees * Mathf.Deg2Rad));
}
/// <summary>
/// Draws the FOV mesh using raycasting.
/// </summary>
private void DrawFOV()
{
int rayCount = Mathf.RoundToInt(viewAngle * meshResolution);
float rayAngleSize = viewAngle / rayCount;
List<Vector3> viewPoints = new List<Vector3>();
ViewCastInfo oldViewCast = new ViewCastInfo();
for (int i = 0; i <= rayCount; i++)
{
float angle = playerVisualTransform.eulerAngles.y - viewAngle / 2 + rayAngleSize * i; // angle is current rotation of the player
ViewCastInfo newViewCast = ViewCast(angle);
if (i > 0)
{
bool edgeDistanceThresholdExceeded = Mathf.Abs(oldViewCast.distance - newViewCast.distance) > edgeDistanceThreshold;
if (oldViewCast.hit != newViewCast.hit || (oldViewCast.hit && newViewCast.hit && edgeDistanceThresholdExceeded))
{
EdgeInfo edge = FindEdge(oldViewCast, newViewCast);
if (edge.pointA != Vector3.zero)
{
viewPoints.Add(edge.pointA);
}
if (edge.pointB != Vector3.zero)
{
viewPoints.Add(edge.pointB);
}
}
}
viewPoints.Add(newViewCast.point);
oldViewCast = newViewCast;
}
int vertexCount = viewPoints.Count + 1;
Vector3[] vertices = new Vector3[vertexCount];
int[] triangles = new int[(vertexCount - 2) * 3];
vertices[0] = Vector3.zero;
for (int i = 0; i < vertexCount - 1; i++)
{
vertices[i + 1] = playerVisualTransform.InverseTransformPoint(viewPoints[i]);
if (i < vertexCount - 2)
{
triangles[i * 3] = 0;
triangles[i * 3 + 1] = i + 1;
triangles[i * 3 + 2] = i + 2;
}
}
viewMesh.Clear();
viewMesh.vertices = vertices;
viewMesh.triangles = triangles;
viewMesh.RecalculateNormals();
}
private EdgeInfo FindEdge(ViewCastInfo minViewCast, ViewCastInfo maxViewCast)
{
float minAngle = minViewCast.angle;
float maxAngle = maxViewCast.angle;
Vector3 minPoint = Vector3.zero;
Vector3 maxPoint = Vector3.zero;
for (int i = 0; i < edgeResolveIterations; i++)
{
float angle = (minAngle + maxAngle) / 2;
ViewCastInfo newViewCast = ViewCast(angle);
bool edgeDistanceThresholdExceeded = Mathf.Abs(minViewCast.distance - newViewCast.distance) > edgeDistanceThreshold;
if (newViewCast.hit == minViewCast.hit && !edgeDistanceThresholdExceeded)
{
minAngle = angle;
minPoint = newViewCast.point;
}
else
{
maxAngle = angle;
maxPoint = newViewCast.point;
}
}
return new EdgeInfo(minPoint, maxPoint);
}
private ViewCastInfo ViewCast(float globalAngle)
{
Vector3 dir = DirFromAngle(globalAngle, true);
RaycastHit hit;
if (Physics.Raycast(playerVisualTransform.position, dir, out hit, viewRadius, obstacleMask))
{
return new ViewCastInfo(true, hit.point, hit.distance, globalAngle);
}
else
{
return new ViewCastInfo(false, playerVisualTransform.position + dir * viewRadius, viewRadius, globalAngle);
}
}
public List<Transform> GetVisibleTargets() => visibleTargets;
public float GetFOVRadius() => viewRadius;
public float GetFOVAngle() => viewAngle;
public struct ViewCastInfo
{
public bool hit;
public Vector3 point;
public float distance;
public float angle;
public ViewCastInfo(bool _hit, Vector3 _point, float _distance, float _angle)
{
hit = _hit;
point = _point;
distance = _distance;
angle = _angle;
}
}
public struct EdgeInfo
{
public Vector3 pointA;
public Vector3 pointB;
public EdgeInfo(Vector3 _pointA, Vector3 _pointB)
{
pointA = _pointA;
pointB = _pointB;
}
}
}
C#
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEditor;
[CustomEditor(typeof(FieldOfView))]
/// <summary>
/// Custom Editor script for visualizing the Field of View (FOV) in the Unity Editor Scene view.
/// </summary>
public class FOVEditor : Editor
{
/// <summary>
/// Draws the FOV visualization in the Scene view.
/// </summary>
private void OnSceneGUI()
{
FieldOfView fov = (FieldOfView)target;
Handles.color = Color.white;
Handles.DrawWireArc(fov.transform.position, Vector3.up, Vector3.forward, 360, fov.GetFOVRadius());
Vector3 viewAngleA = fov.DirFromAngle(-fov.GetFOVAngle() / 2, false);
Vector3 viewAngleB = fov.DirFromAngle(fov.GetFOVAngle() / 2, false);
Handles.DrawLine(fov.transform.position, fov.transform.position + viewAngleA * fov.GetFOVRadius());
Handles.DrawLine(fov.transform.position, fov.transform.position + viewAngleB * fov.GetFOVRadius());
// Draws lines to visible targets
Handles.color = Color.red;
foreach (Transform visibleTargets in fov.GetVisibleTargets())
{
Handles.DrawLine(fov.transform.position, visibleTargets.position);
}
}
}
Used assets